
546 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 4, APRIL 1997

A Simple Method for Calculating the Reflection
Coefficient of Open-Ended Waveguides

Zhongxiang Shen and Robert H. MacPhie

Abstract—This paper presents a simple but effective method for
the analysis of open-ended waveguides. The method begins with the
introduction of a large waveguide to approximate the half-space. In
order to avoid the convergence problem lossy dielectric is assumed to
homogeneously fill the large waveguide. After obtaining a number of
convergent data for different values of the loss tangent an extrapolation
technique is employed to calculate the solution to the original problem—a
waveguide terminated by an infinite conducting flange and radiating into
a lossless or low-loss half-space. Numerical results are given to show the
validity of the proposed method. The behavior of the effect of the loss
tangent on the size of the large waveguide and on the final results are
also examined.

Index Terms—Modal analysis, open-ended waveguide, waveguide junc-
tion.

I. INTRODUCTION

Open-ended waveguides have found wide applications in aero-
nautics, large phased array systems, thermography, diathermy and
hyperthermia, and the measurement of material properties, etc. The-
oretical and experimental studies of open-ended waveguides have
occupied the attention of numerous researchers for several decades
(see [1]). The variational principle [2], the correlation matrix method
[3], and the transverse operator method [4] were used to compute
the aperture admittance of an open-ended rectangular waveguide
with infinite flange. The radiation from the TEM mode in a coaxial
line terminated with a flat infinite metal plate was considered in
[5] and later on was further studied and applied to nondestructive
measurement of materials in [6]. The analysis and application of
open-ended circular waveguides were then studied in [7].

In order to obtain accurate results for the aperture admittance of
the flanged open-ended waveguide the rigorous full-wave analysis
[3], [4], [6], [7] should be invoked. However, these methods are
complicated and involve numerical integration, and therefore, are
computationally expensive. It is desirable to develop a method which
is simple and yet can give accurate solutions to this classical problem.

The idea of the method presented in this paper is as follows. Firstly,
a large waveguide is introduced to approximate the half-space. As
pointed out in [8] the size of this waveguide should be very large
when the medium in the half-space is low-loss or lossless (which
results in expensive computational effort) since the authors must take
a very large number of modes in the large waveguide into account
to ensure convergent results. In order to overcome this drawback
of the technique and to reduce the size of the large waveguide to
save computer time, it is assumed to be filled with a homogeneous
moderately lossy medium. The numerical results for lossy dielectric
are then employed to calculate the solution to the actual lossless or
low-loss half-space problem by an extrapolation technique. A similar
idea, which was termed “complexification and extrapolation,” was
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presented in [9] to accelerate the iterative solution of electromagnetic
scattering problems.

Numerical tests demonstrate that the proposed method is simple
but effective for open-ended waveguide problems. Numerical results
for the reflection coefficient of an open-ended coaxial line and the
aperture admittance of an open-ended rectangular waveguide are
presented and compared with exact solutions in [3] and [6]. Very
good agreement is obtained. It will be shown that the size of the large
waveguide depends on the loss tangent of the medium assumed, while
the resultant solutions are not sensitive to the assumed loss tangent
of the medium in the large waveguide. This property makes the large
waveguide be of moderate size to reduce computation time.

II. DESCRIPTION OF THEPROPOSEDMETHOD

Fig. 1(a) shows the side view of an open-ended waveguide with an
infinite conducting flange, where the cross section of the waveguide
can be arbitrary. At first, the authors introduce a large waveguide to
approximate the half-space. Then the problem considered reduces
to that of a waveguide junction as illustrated in Fig. 1(b). The
cross section of the postulated large waveguide should be the same
as, or similar to, that of the input waveguide (guide 1, Fig. 1) to
simplify the analysis of the related waveguide junction. Meanwhile,
symmetry may also be taken into account to reduce the computational
complexity.

The study in [8] stated that the size of the large waveguide should
be very large for a low-loss medium retained in the large waveguide.
It was then concluded that the correlation matrix method [3] must be
used for lossless and low-loss cases to increase accuracy and save
computer time. Unfortunately, for most practical applications, the
medium in the half-space is lossless or low loss. Therefore, it appears
that the method of introducing a large waveguide to represent the half-
space is not useful for most practical cases. However, the purpose of
this paper is to demonstrate that this method can be useful for most
practical applications by using the complexification and extrapolation
technique [9]. It assumes that the large waveguide is homogeneously
filled with a lossy dielectric (producing physical loss to eliminate the
effect of the perfectly conducting wall of the large waveguide); the
authors thenextrapolateback to the lossless or low-loss case. The
introduction of the lossy medium into the large waveguide makes it
possible to use a moderately large guide to save computer time.

After obtaining the reflection coefficient or aperture admittance
data for the waveguide junction for several different values of
dielectric loss tangent, (i.e., three different values of loss tangent)
an extrapolation technique (parabolic extrapolation) is employed to
calculate the solution to the lossless or low-loss half-space problem in
the following way. Suppose the imaginary parts of three complexified
�r2 values are�00
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r23 and the corresponding reflection
coefficients are�1, �2, and�3, respectively. The authors compute
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(a)

(b)

Fig. 1. (a) Side-view of an open-ended waveguide and its (b) simplified
waveguide junction model.

and then set�00
r2 equal to zero, or to the actual small loss tangent, to

yield the desired reflection coefficient of a waveguide terminated by
an infinite conducting flange.

As pointed out in [9], parabolic extrapolation is second-order
accurate provided the function�(�00

r2) is sufficiently smooth. This
means that for uniform spaces��00

r2 = �00
r23 � �00

r22 = �00
r22 � �00

r21

the error in� due to the extrapolation is0[(��00
r2)

2]. In practice, the
authors have found that the accuracy of the extrapolation procedure
is better than the estimate would suggest.

III. N UMERICAL EXAMPLES

This section presents some numerical results for the reflection
coefficient of an open-ended coaxial line and the aperture admittance
of an open-ended rectangular waveguide by the method described
in Section II. Firstly, the authors give some results for the effect of
the loss tangent on the size of the large waveguide. Fig. 2 shows
the variation of the reflection coefficient of a coaxial-to-circular
waveguide junction with respect to the size of the large circular
waveguide for different values of loss tangent. It is seen that the lower
the loss of the medium retained in the large waveguide, the larger
is its size to obtain convergent results. For the very lossy medium,
i.e., �r2 = 2:05 � j, the result obtained withb2=b1 = 7 is quite
satisfactory. The number of modes assumed in the large waveguide
depends on the size of the waveguide according to the following
equation:

N2 = N1

b2

b1 � a1
(5)

(a)

(b)

Fig. 2. Variation of the reflection coefficient of an open-ended coaxial line
with respect to the radius of the large circular waveguide for different values
of loss tangent (a1 = 1:4364 mm, b1 = 4:725 mm, �r1 = �0

r2
= 2:05,

f = 6 GHz). (a) Real part of�. (b) Imaginary part of�.

whereN1 andN2 are the numbers of modes considered in the input
and large waveguides,a1 andb1 are the inner and outer radii of the
coaxial line, andb2 is the radius of the large circular waveguide.
Results presented in Fig. 2 are obtained by fixingN1 = 10 (the
dominant TEM mode plus nine TM0n modes).

Fig. 3 shows the comparison of results obtained by the proposed
method and data given in [6] for the reflection coefficients of an
open-ended coaxial line. It is seen that the agreement is excellent.
The results shown in Fig. 3 are obtained by extrapolating three values
of the reflection coefficient for�r2 = 2:05� j0:2, 2:05� j0:4, and
2:05� j0:6 back to the real axis of the relative permittivity�r2.

The effect of different reference data used for extrapolation on
the resultant reflection coefficient is examined in Table I, where the
results obtained by extrapolating three groups of data are compared.
It can be seen that the maximum error between the results for Case
1 and Case 2 is less than 0.1%, and the maximum difference of
the absolute values of the reflection coefficients between Case 1 and
Case 3 is less than 1%. The loss tangents assumed in Case 3 are
quite big, which makes the size of the large circular waveguide only
about ten times that of the coaxial line while the accuracy of the
resultant reflection coefficient is still quite satisfactory. This shows
that the method described in this paper is computationally efficient,
very easy to implement, and also very accurate for the open-ended
waveguide problems.
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Fig. 3. Magnitude and phase of the reflection coefficient of a coaxial line
terminated by an infinite flange (a1 = 1:4364 mm, b1 = 4:725 mm,
�r1 = �r2 = 2:05).

TABLE I
MAGNITUDE AND PHASE OF THEREFLECTION COEFFICIENT OF ANOPEN-ENDED

COAXIAL LINE WITH INFINITE FLANGE (a1 = 1:4364 mm, b1 = 4:725 mm,
�r1 = �r2 = 2:05). CASE 1: USING �

00

r2
= �0:1; �0:2; �0:3 THREE POINTS

FOR EXTRAPOLATION; CASE 2: USING �
00

r2
= �0:2; �0:4; �0:6 THREE

POINTS; CASE 3: USING �
00

r2
= �0:5; �1:0; �1:5 THREE POINTS

Finally, the authors present some calculated results for the aperture
admittance of an open-ended rectangular waveguide with an infinite
flange. For this problem the introduced large waveguide is assumed
to be of rectangular shape and collinear with the input waveguide.
The aperture admittance is defined as

Y = G+ jB = Y0; 10
1� �10

1 + �10
(6)

where Y0; 10 and �10 are the characteristic admittance and the
reflection coefficient of the dominant TE10 mode. In Fig. 4 the
authors’ results are compared with available data obtained by the
correlation matrix method [3]. The authors’ results shown in Fig. 4
are obtained by extrapolating three values of the aperture admittance
for �r2 = 1 � j0:1, 1 � j0:2, and1 � j0:3 to that for real�r2. It
is noted that the agreement between them is very good, which also
verifies the validity of the method presented in this paper.

Fig. 4. Aperture admittance of an open-ended rectangular waveguide with
infinite conducting flange (a = 2:25b, �r1 = �r2 = 1).

IV. CONCLUSION

This paper has provided a simple but very effective method for
determining the reflection coefficients and aperture admittances of
open-ended waveguides. The method is based on the introduction
of a large waveguide to approximate the half-space and on the
complexification and extrapolation technique. It has been shown that
the method proposed here is very easy to implement and can give
quite accurate results. The value of the assumed loss tangent has
a significant effect on the size of the second waveguide but does
not influence the final result. The method introduced in this paper
applies to open-ended waveguides of arbitrary cross section and can
also be extended to analyze open-ended waveguides without, or with,
finite flange, horn antennas, and open-ended waveguides radiating
into stratified media, etc.
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